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Vakantiecursus 2022

De Vakantiecursus Wiskunde voor leraren in de exacte vakken in HAVO,
VWO, HBO en andere belangstellenden is een initiatief van de Neder-
landse Vereniging van Wiskundeleraren, en wordt georganiseerd door het
Platform Wiskunde Nederland. De cursus wordt sinds 1946 jaarlijks ge-
geven op het Centrum Wiskunde en Informatica te Amsterdam, en later
ook aan de Technische Universiteit Eindhoven.

Deze cursus wordt mede mogelijk gemaakt door een subsidie van de Ne-
derlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), en een
bijdrage van 4TU.AMI, het toegepaste wiskunde-instituut van de 4 Ne-
derlandse technische universiteiten. Organisatie vindt plaats in nauwe
samenwerking met het Centrum voor Wiskunde en Informatica (CWI) en
de Technische Universiteit Eindhoven (TU/e).

De presentaties van de sprekers zullen zo veel mogelijk beschikbaar komen
op de PWN-website: https://www.platformwiskunde.nl.

Met dank aan

Ondersteuning PWN: Sjoukje Talsma.
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Historie

De eerste vakantiecursus wordt in het jaarverslag 1946 van het Mathema-
tisch Centrum als volgt vermeld:

Op 29 en 31 Oct. ’46 werd onder auspiciën van het M.C.
een druk bezochte en uitstekend geslaagde vacantiecursus ge-
houden voor wiskundeleeraren in Nederland. Op 29 October
stond de wiskunde, op 31 October de didactiek van de wis-
kunde op de voorgrond. De sprekers waren: Prof.Dr. O. Bot-
tema, “De prismoide”, Dr. A. Heyting, “Punten in het onein-
dige”, Mr. J. v. IJzeren, “Abstracte Meetkunde en haar beteke-
nis voor de Schoolmeetkunde.”, Dr. H.D. Kloosterman, “Ont-
binding in factoren”, Dr. G. Wielenga, “Is wiskunde-onderwijs
voor alpha’s noodzakelijk?”, Dr. J. de Groot, “Het scheppend
vermogen van den wiskundige” en Dr. N.L.H. Bunt, “Moeilijk-
heden van leerlingen bij het beginnend onderwijs in de meet-
kunde”.

Aan het einde van de vacantiecursus werden diverse zaken be-
sproken die het wiskunde-onderwijs in Nederland betroffen. Een
Commissie werd ingesteld, die het M.C. over de verder te or-
ganiseren vakantiecursussen van advies zou dienen. Hierin na-
men zitting een vertegenwoordiger van de Inspecteurs van het
V.H. en M.O. benevens vertegenwoordigers van de lerarenver-
enigingen Wimecos en Liwenagel.

Ook werd naar aanleiding van “wenschen” die tijdens de cursus
naar voren gekomen waren ingesteld: “een colloquium over mo-
derne Algebra, een dispuut over de didactiek van de wiskunde,
beiden hoofdzakelijk bedoeld voor de leeraren uit Amsterdam en
omgeving, terwijl tevens vanwege het M.C. een cursus over Ge-
tallenleer werd toegezegd te geven door de heeren v.d. Corput en
Koksma. (Colloquium, dispuut en cursus zijn in 1947 gestart
en verheugen zich in blijvende belangstelling).
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1 Preliminaries, content and goals of this course
Nelly Litvak

1.1 Complex networks, modeled as random
graphs

Many real-life systems are networks. A network is a set of objects connected by
some relationship. For example, a railroad is a collection of stations connected
by rails. In a social network, people are connected by friendships. Internet is a
network of routers connected by wires. In our brain, neurons are connected if
they fire together.

A graph is a natural mathematical model for a network of any nature. In a graph,
each object is represented as a vertex, and if there is a relationship between
two vertices, then there is an edge between them. Undirected edges represent
symmetric relations, and we draw them as lines. For example, communications
between two Internet routers usually go in both directions. If the relation is not
symmetric, we model this using directed edges and use arrows to draw them. For
example, if somebody follows you on Twitter, you might not follow back.

Self-test: Look at the networks in Figure 1.1a–1.1d. What are the vertices and
what are the edges? Are the edges directed or undirected? The answer
will be given in Section 1.4.

In this course we will learn to model large real-life networks, such as social
networks or the World Wide Web, using so-called random graphs.

Make the next step yourself: What do you think exactly is random about a
random graph? There is no wrong answer, just think logically yourself,
and in the next line we will explain what ‘random’ means in this course.

Usually in research, and always in this course, we will assume that in a random
graph the vertices are fixed, but the edges are placed at random. This ma-
kes sense because relationships between objects often emerge at random, like
friendships in a social network. Also, even if the network is not random, such
as the Internet, its structure is so complicated that it is often useful to describe
it using statistical summaries and model as a random object. A random graph
model is in fact a set of rules, according to which the random edges are chosen.
Different rules result in different models with different mathematical properties.
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For example, in one model, edges between all vertex pairs can be equally likely,
while other models assign higher probabilities to some vertex pairs.

Self-test: Assume you want to construct a random graph of n vertices. What is
the easiest way to place edges at random?

• Can you write a formal mathematical description of this random
graph model? If so, write it down. If not, what is on your way?

• Can you write down an algorithm that generates such random graph
on a computer? If so, write it down. If not, what is on your way?

When we reach Chapter 3, look back at this exercise: is the rule that you
came up the same as the Erdős-Rényi random graph model?

In this course we will study several by now well understood, even classical,
random graph models. More specifically, we will study how particular rules
of placing random edges result in graphs that share some of the fundamental
empirical properties of real-life networks. In Section 1.4 we will list the properties
of real-life networks that we will learn to model in this course. The rest of the
chapters are about mathematical formalization of these properties and how they
emerge from the edge-placing rules defined by the random graph models.

1.2 Position of this course with respect to
related domains

In this section we will briefly explain how this course aligns with related domains
such as ‘graph theory’, ‘network science’, and ‘data science’.

The branch of mathematics that studies graphs is called graph theory. It has
a long history dating back to Leonhard Euler in 17361. The theory of random
graphs is much younger. It has spurred from the graph theory in the pioneering
work by Paul Erdős and Alfréd Rényi in the 1950s2.

It is interesting that, initially, random graphs were invented and used to solve
difficult graph-theoretic problems. This line of research has by now matured
into the so-called probabilistic method in graph theory3. This is of course a very
different purpose than modeling, say, the World Wide Web, which did not even
exist when random graphs were invented! The fact that the E-R model turned
out to be useful for understanding networks is another brilliant demonstration of

1The seven bridges of Königsberg, in: The world of mathematics, Simon and Schuster,
New York, 1956, pp. 573–580.

2On random graphs I, Publicationes Mathematicae Debrecen, Vol. 6, 1959, pp. 290–
297.

3Alon, Noga and Spencer, Joel H., The probabilistic method, John Wiley & Son, 2016.
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how mathematics can be useful for the purposes that did not even exist when this
mathematics was created. There are numerous such examples in science, most
notable perhaps is the relatively recent use of the number theory in cryptography.

Today the theory of random graphs has largely diverted from the traditional
scope and methodology of graph theory. It is now a well developed and quickly
growing area of modern mathematics that provides mathematical models and
tools for studying real-life networks. As such the theory of random graphs is
contributing into a broad interdisciplinary domain of network science. Metho-
dologically, the theory of random graphs often builds on statistical mechanics,
theoretical probability, and statistics.

The emergence of the theory of random graphs in its current form is motivated
by the overwhelming interest in networks that took off around the end of 1990s.
Of course, the networks were studied long before that. In 1965, Derek de Solla
Price analyzed the network of scientific citations. In such networks, the vertices
are scientific papers, and a (directed) edge means that one paper cites another4.
Social networks were studied, too. Milgram conducted his famous small-world
experiment in 1960s. The work by Granovetter on the ‘strength of weak ties’
dates back to 1977.

So why this sudden massive interest? This has everything to do with computer
technology and data. The Internet is a giant network itself, and it gave rise
to the World Wide Web, Facebook, Twitter, Wikipedia, and many other online
networks that greatly influence our life. Moreover, we now have the technology
to stream, store, analyze and share large amounts of data, including the network
data. Data became a crucial game changer in studies of networks. This way,
the theory of random graphs, together with the modern network science are
integrated into a broader scope of data science.

Self-test. Can you draw a diagram to show the relation of the domains ‘graph
theory’, ‘theory of random graphs’, ‘networks science’, and ‘data science’?
There is no one right answer, just check your own understanding.

1.3 The goal of this course

In this course we will describe and analyze mathematically several fundamental
properties of complex networks using the theory of random graphs. For that, we
will study a number of basic random graph models and discuss their pros and
cons for modeling real-life networks.

At the end of the course the students will be able to:

• describe mathematically the empirical properties of real-life complex net-

4Derek J. De Solal Price, Networks of scientific papers, Science, 1965, pp. 510–515.
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works;

• choose and explain a random graph model that adequately represents these
properties;

• provide a mathematical argument why the property of interest is repre-
sented adequately in the chosen random graph model.

The course is designed for MSc-level students and professionals with a large
variety of technical backgrounds:

• The students with greater interest in mathematical theory, may dive dee-
per into mathematical derivations and proofs.

• The students with interest in numerical studies and applications may in-
stead choose to investigate properties of random graphs empirically using
simulations.

Self-test.

• What do you want to learn in this course? Can you write it down or
say it out loud specifically?

• Do you prefer to prove theorems or to code and run numerical expe-
riments? What are the advantages and the disadvantages of each of
these research methods?

1.4 Properties of real-life networks addressed in
this course

The connections in complex networks, such as hyperlinks in the World Wide
Web, or online friendships, appear in rather unpredictable ways. Yet, surprisin-
gly, many networks of a completely different nature share common properties.
This is why we talk about a particular structure of a network. The presence
of a predictable structure does not contradict the fact that individual network
connections are random, because when random connections occur on a massive
scale, they form clear patterns. These patterns are exactly what we mean by
the ‘structure of a network’. This structure can be captured in a mathematical
model, and in this course we will learn how to do this for large real-life networks.

In this course we will address four such patterns, or structural properties, of
complex networks.

Sparse Consider a social network. Even if the network is very large, one can
maintain only so many friendships. We say that social networks are often
sparse, meaning that the number of connections per person is limited, and
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(a) Network of retweets about the ProjectX
in Haren, Neltherlands 21-09-2012 7:00.
The average number of retweets per user
is small compared to the network size.
This network is sparse. Image: Marijn
ten Thij.

(b) Any railway station can be reached by
train from any other. The railway net-
work is connected. Image: Wikimedia
Commons

(c) The number of other webpages, from
which a webpage can be reached varies
greatly per webpage. The Webgraph is
scale-free. Source: P. Boldi et al. BU-
biNG: Massive crawling for the masses.
In WWW 2014, https://law.di.unimi.
it/datasets.php.

(d) Since Anna is a friend of Boris and Ce-
cile, it is likely that Boris and Cecile are
friends, too. Social networks have many
triangles. Drawing: Natalia Litvak.

Figure 1.1

does not increase very much with the network size. Figure 1.1a shows an
interesting example: the network of retweets about Project X in Haren,
the Netherlands, in 2012. A birthday invitation of a 16-year-old girl went
viral in social media and ended up in a destructive riot. Dots are Twitter
users and each tiny arrow (a directed edge) represents a retweet from one
user to another. The figure shows this network in the morning before the
riot. We see that the network is sparse, on average there are only 1.5
retweets per user. Over the night of the riot the network increased in size
more than 10 times, but the average number of retweets remained small,
it went only a little bit above two.

Self-test. Can you give an example of a sparse real-life network? Why

Preliminaries, content and goals of this course 5
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do you think it is sparse? Can you explain the reason why in this
network the average degree does not grow with the network size?

Connected Consider the network of railway stations connected by railroads,
as the NS network in Figure 1.1b. The vertices are the stations, and the
(undirected) edges are the railway connections between them. A passenger
can travel by train from any station to any other. The railroad network
is connected. The Internet is another powerful example of a connected
network. Internet is extremely complex and completely decentralized, yet,
the data can be transferred across the planet from any Internet router to
any other!

Self-test. Can you give an example of a connected network? Why do
you think it is connected? Do you think the World Wide Web is
connected?

Scale-free In the Web graph, vertices are the webpages, and (directed) edges are
the hyperlinks. By clicking on a hyperlink, we can go from one webpage to
another. From how many other pages a typical webpage can be reached?
In Figure 1.1c we show the average and the maximum of this number in
the .eu domain of the Web graph in 2015. We see that on average, a
webpage can be reached from 85.7 other webpages. However, this number
differs from one webpage to another, and the maximum is over 200 000
times larger than average! We say that such network is scale-free. This
unusual term means that there is no such thing as a ‘typical webpage’. The
number of hyperlinks pointing to a page can have very different scales –
from a few, to hundreds, thousands, and millions.

Self-test: Can you give an example of a scale-free network? Why do
you think it is scale-free? Can you give an example of some other
quantities that are scale-free in the sense that the maximum is by
many orders of magnitude larger than average?

Answer: Some other examples of scale-free quantities are: incomes
of people, city sizes, and sizes of files sent over the Internet.

Triangles How do people in social networks usually meet? Often I know friends
of my friends, they can be my friends, too. Groups of friends create clusters
with many triangles, such as in Figure 1.1d: if Anna is a friend of Boris
and Cecile, then it is not surprising that Boris and Cecile know each other
as well. Having many triangles is another typical structural property of
complex networks.

Self-test: Can you give an examples of networks where you may expect
many triangles? What other connection patterns among small groups
of people might be typical for a social network?

Surprisingly, many real-life networks of a completely different nature (social net-
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works, the Internet, networks of neurons in the brain, networks of bank transac-
tions, protein-protein interactions, etc.) share these properties: they are sparse,
connected, scale-free, and have many triangles. In this course we will learn how
to describe these structural properties of random connections in mathematical
terms, and how to capture them in random graph models.

1.5 Communities, small world, and other
properties of real-life networks

There are many other very interesting and common structural properties of real-
life networks that are not part of this course. For example, we often see commu-
nities. In social networks, communities can be defined by interests, language, or
geography.

Another famous property of real-life networks is the ‘small world phenomenon’ :
most pairs of vertices are connected by a short path of edges. In social net-
works, this phenomenon is also known as ‘six degrees of separation’ stating that
‘everybody on this planet is separated only by six other people’ (John Guare).

The communities and the small world phenomenon, of course, too, have been
studied using random graphs. The research on random graphs and complex
networks is happening right now, and the authors of these notes are a part of
this collective scientific effort.

We hope that this course will equip you with mathematical tools for thinking
about complex networks, and leave you with exciting feeling of exploration and
endless opportunities of this quickly developing branch of modern mathematics.

1.6 Work in progress

As a teacher I believe that it is not very important what I write or say, it is
mostly important what students do.

What should students do in a course on random graphs? One of the best ways
of learning is self-testing, this is why I want this book to be full of self-tests. At
each step, I want to give a very coherent and small piece of theory and let the
students test right away whether they’ve got it right. I also want to explain the
answer right away so that the students get feedback immediately.

Writing such a syllabus is not easy, and it so happened that I had an impossible
dead-line before the Vakanticursus 2022. I chose to stick to my idea of what a
good syllabus should be, which means that I could not complete all chapters.
I have completed this introductory Chapter 1, Chapter 2 that introduces main
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techniques, and Chapters 3 and 4 for classes 1 and 2. Unfortunately, for classes
3–6, I had to resort to only a short summary.

I know this is not ideal but I feel I could not do this differently at this point. If
you are not satisfied with the syllabus in its current form, I am really sorry. I
also apologize for the multiple typo’s that I – no doubt – have made and haven’t
found. But I am also very curious about feedback at the Vakanticursus 2022 on
the style of the chapters that I managed to complete!

Thank you for joining this course. We will do our best to make it interesting
and useful for you. I will of course continue working on this syllabus. I hope to
share a more complete and better version with you soon enough.

Kind regards, Nelly Litvak.

Enschede, 16-08-2022
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2 Network as a graph
Nelly Litvak

2.1 Mathematical representation of vertices and
edges

A network is modeled as a graph G = (V,E).

The capital letter V denotes the set of vertices. We will associate vertices with
numbers: V = {1, 2, . . . , n}, and write this as V = [n]. Usuallly we will denote
vertices by small letters i, j, k ∈ V .

The capital letter E denotes the set of edges. Mathematical description of the
edges is our first step to the abstract mathematical representation of a network.

In Figure 2.1a we see an undirected graph, where edges are drawn as lines. In
Figure 2.1b we see a directed graph, where edges are drawn as arrows. This
visual representation is clear, but it is not suitable for operating with graphs in
a mathematical derivation or a computer program. For these purposes, we need
a formal mathematical definition of an edge.

(a) Undirected graph (b) Directed graph

Figure 2.1

Make the next step yourself. If i, j ∈ V are two vertices, how would you denote
an edge between them? For example, in Figure 2.1a on the left, there is
an undirected edge between i = 1 and j = 2. How would you write down
this edge as a mathematical object? And how would you write down the
directed edge from j = 2 to i = 1 in Figure 2.1b? What will be the
difference between the notation for a directed and an undirected case?

9



Clearly, an edge is defined by a pair of vertices, so the notation for an edge
between i and j will involve both i and j. For example, we could write ij. But
then, how do we know whether this edge is directed or undirected?

Mathematical representation of undirected edges. In the graph theory,
and in the theory of random graphs, we mathematically represent an undirected
edge as an unordered set of two vertices. So, the edge between i and j is denoted
by {i, j}. The curly brackets are used because it is a standard notation for an
unordered set. ‘Unordered’ means that the order of i and j is irrelevant. The
formal way to write it, is:

{i, j} = {j, i} for all i, j ∈ V .

This equality makes sense because in an undirected graph the edge from i to
j is the same as the edge from j to i (think, for example, of edge {1, 2} in
Figure 2.1a). When there are several edges between i and j we may index them
as in {i, j}1, {i, j}2, etc.

In this course we will mainly deal with undirected graphs.

Mathematical representation of directed edges. In the graph theory, and
in the theory of random graphs, we mathematically represent a directed edge as
an ordered set, or, a vector, of two elements. So, the edge from i to j is denoted
by (i, j). The round brackets are used because it is a standard notation for a
vector. In a vector, the order of its elements is improtant. The formal way to
write it is:

(i, j) ̸= (j, i) if i ̸= j.

This inequality makes sense because in an directed graph the edge from i to j
is not the same as the edge from j to i. For exmaple, in Figure 2.1b, we see an
edge (2, 1), but edge (1, 2) does not exist in this directed graph.

2.2 Key technique: A sum of indicators

It is very important that you understand this section completely
because this technique will be used throughout the course

Pre-requisites. The following preliminary knowledge is required for this section:

• Probability distribution of a discrete random variable (required);

• Expectation of a discrete random variable (required);

• Law of large numbers (desirable);

• Linearity of expectations (required).
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In what follows we assume that you are able to explain and apply these
notions. If you feel that this is not the case, please revise your knowledge
before proceeding further.

As we discussed before, in a random graph, an edge may exist or not. More pre-
cisely, existence of an edge in a random graph is a random event. This kind of
randomness with a binary outcome – yes or no – is very common among random
phenomena. In probability theory, such random binary outcome is fomally de-
scribed using so-called Bernoulli random variables. A Bernoulli random variable
is 1 for ‘yes’, and 0 for ‘no’.

So, in a random graph, there is a Bernoulli random variable corresponding to
each edge. It is common to write down these Bernoulli random variables as
so-called indicators. In the theory of random graphs, indicators are very useful
because we can write many relevant quantities, such as the number of edges or
triangles, as sums of indicators. This is very good news because from probability
theory we know a lot of properties of sums of indicators. Therefore, once we have
written a numerical quantity as a sum of indicators, we can derive analytically
many properties of this quantity, and eventually derive many useful results for
a random graph.

We will use indicators and their sums throughout this course. The goal of this
section is to introduce this technique. In Section 2.2.1, we will explain what
the indicators are, and in Section 2.2.2, as an example, we will use indicators to
derive the formula for the expected number of edges.

2.2.1 An indicator of an edge

Assume that G = ([n], E) is an undirected random graph. Each edge {i, j} may
exist or not. When edge {i, j} exists, it is a part of the edge set E. Therefore,
we can formally write the event [edge {i, j} exists] as [{i, j} ∈ E] (we used the
square brackets to separate the description of an event from the rest of the text.)

Denote by pij the probability that edge {i, j} exists. We can formally write this
as

P({i, j} ∈ E) = pij , i, j ∈ [n].

Self-test. Why do we add i, j ∈ [n] at the end of the formula above? Will the
meaning of the formula change, if we do not add it? First attempt answer
yourself, then read the answer. It is very useful to give an answer, even
(especially!) a wrong one. Research shows that learning happens when we
make mistakes.

Answer. We add i, j ∈ [n] to state that the formula holds for all possible
i and j in [n]. We must add this because the formula is complete only if all
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symbols are defined. If we do not add this, then the formula is incomplete
and carries no information because we do not know for which values of i
and j the formula is true.

In any formula we always must specify the range of variables. This can
be done in the formula itself, as we did above, or in the text.

Now we will give the main definition of this section. We introduce the indicator
of edge {i, j}, and we denote this indicator by Iij .

Definition 1. For each i, j ∈ [n], the indicator of edge {i, j}, denoted by Iij, is
a Bernoulli random variable that is 1 if {i, j} ∈ E (edge {i, j} exists), and 0 if
{i, j} /∈ E (edge {i, j} does not exist).

The probability distribution of Iij is given by the following table, where the values
are written in the first line, and the corresponding probabilities are written in
the second line:

Iij 0 1

probability 1− pij pij .
, i, j ∈ [n].

Self-test. Write down the probability distribution of Iij yourself, without loo-
king at the table above. Do you have any slightest difficulty with this?
What is the source of this difficulty? Is the difficulty in understanding the
definition of the indicator? Then make a small example, e.g. take n = 4,
draw a graph of 4 vertices, and go through this section again, translating
each step into your example. Is the difficulty in understanding the ta-
ble? Then revise the topic ‘Probability distribution of a discrete random
variable’.

We can now easily obtain the expectation of Iij as follows:

E(Iij) = 0 · (1− pij) + 1 · pij = pij , i, j ∈ [n]. (2.1)

In words, the expectation of indicator Iij is the probability that edge {i, j}
exists. We can explain this intuitively as follows. If we construct the random
graph infinitely many times, then, in the limit, by the law of large numbers, pij
will be the fraction of times when our graph will contain edge {i, j}.

Self-test. Write down the derivation of E(Iij) yourself, without looking at the
derivation in (2.1). Do you have any slightest difficulty with this? What is
the source of this difficulty? Is the difficulty in understanding the definition
of the indicator? Then make a small example, e.g. take n = 4, draw a
graph of 4 vertices, and go through this section again, translating each
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step into your example. Is the difficulty in understanding and computing
the expectation? Then revise the topic ‘Expectation of a discrete random
variable’.

In the next section we will use the sum of indicators for the first time, for
computing the expected number of edges.

2.2.2 Example: Expected number of edges

Recall that we work with a random graph G = ([n], E), where E is a set of
edges placed at random. We assume that the random graph is undirected. We
also assume that the random graph is simple. The statement ‘graph is simple’
means that the graph does not have double edges (no double edges means that
there cannot be more than one edge between two vertices) and does not have
self-loops (a self-loop is an edge {i, i}, from vertex i ∈ [n] to itself).

We are now interested in the total number of these random edges. The number
of edges is the size of set E. We will denote the size of E using the standard
notation |E|.

The quantity |E| is a random variable because the existence of each edge is a
random event. For example, in a graph of 3 vertices, |E| can be 0 when no edge
exists, and 3 when all edges exist.

Our goal now is to compute E(|E|), the expectation of the random variable |E|.
How can we do this? The notation |E| is compact and clear, but we cannot do
any computation with it. Hence, we need to write down |E| in a different way,
that yields itself for analysis.

We will now proceed writing |E| as a sum of indicators. In this example we
will do this in great detail. In the rest of the course, even in more complicated
examples, we will assume that the student understands this technique, and we
will use it without additional explanation. Therefore, please make sure that you
are able to explain each step in full sentences. If you can do so before reading
our explanations, you may skip some of the explanations.

Make the next step yourself: Can you write |E| as a sum of indicators Iij ’s? As
you will see below, there are several ways to do it, and we will discuss all
of them, but right now try to produce at least one. You may use the hint
below.

Hint. Notice that each edge contributes exactly 1 to |E| when it exists,
adn 0 when it does nto exist.

Don’t know how to proceed? If you cannot write down the sum, please
write down what exactly holds you back. After that, you may proceed
with reading, but when you finish the section, please come back to the

Network as a graph 13



question what exactly was holding you back, and write down which part
of the explanation helped you to overcome this difficulty.

Below we will first write four possible expressions, and after that we will explain
each of them in detail:

|E| =
∑

{i,j}∈E

1 =
∑

{i,j}∈E

Iij
crucial step!

=
∑

{i,j}⊂[n]

Iij =

n∑
i=1

n∑
j=i+1

Iij . (2.2)

We will now explain all four expressions one by one.

The first sum
∑

{i,j}∈E

1 is simply a definition of |E|. We merely add 1 for each

existing edge. The range of summation (written under the summation
sign), is the set of edges E. In other words, this sum goes through all
existing edges and adds 1 for each of them. The summands in this formula
are deterministic (all equal 1), but this summation has a random range E.
Why is this a problem? Because, if we want to compute, e.g., E(|E|) from
this formula, we will have to compute a weighted sum over all possible
values of E. Recall that E is not a number, it is a set of edges, so its
values are sets as well. For example, in a graph of n = 3 vertices, E can
be {{1, 2}, {1, 3}, {2, 3}} if all vertices are connected, it can be {{1, 3}} if
{1, 3} is the only edge, and it can be ∅ if no edge exists. Altogether, for
n = 3, there are 23 = 8 possible values of E. This is quite many for such
a small graph! What will happen for the general n? Using S as a running
index of all possible values of E, we arrive at

E(|E|) =
∑

S⊆
{
{i,j}:i,j∈[n]

} |S| · P(E = S).

This sum contains 2
n(n−1)

2 terms. (Do you know why 2
n(n−1)

2 ? If not,
no problem, you may skip this for now, we will come back to this in
Chapter 4.) This is a huge number, it has 14 digits already for n = 10.
The formula maybe simplifies in a simple models, but when we consider
a somewhat realistic model, e.g. with inhomogeneity and/or dependence
between edges, going through all possible sets of edges is simply impossible!

This is exactly the reason why we want to use indicators instead. Rather
than summing deterministic numbers over a random set, we prefer to sum
random variables over a deterministic set. Advantages: 1) Avoid the enu-
meration of sets. 2) Probability theory has many strong and useful results
on sums of indicators.

The second sum
∑

{i,j}∈E

Iij introduces indicators. It is identical to the first sum

because we sum over all edges {i, j} ∈ E, and for these edges we have that
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Iij = 1. In other words, in the second sum, we simply replaced the 1’s by
Iij ’s that are equal to one.

Self-test. In the second sum, is the range of the summation determinis-
tic or random? Are the summands deterministic or random? The
answer is in the next paragraph.

The range of summation in the second sum did not change, it is still a
random set E. The summands Iij are de facto deteministic because we
sum only over edges {i, j} that exist in the graph. The usefulness of the
second sum is in injecting indicators into the formula.

We will now make a crucial step from the second sum to the third sum,
∑

{i,j}⊂[n]

Iij .

Make the next step yourself. What is the difference between the second
and the third sum? Can you explain why the third sum is equal
to the second sum? In the third sum, is the range of summation
deterministic or random? In the third sum, are the summands de-
terministic or random?

We will answer the above questions one by one.

Most importantly, in the third sum, we have extended the range of sum-
mation from the set of existing edges E to the set of all possible undirected
pairs {i, j} ⊂ [n]. (The notation {i, j} ⊂ [n] means that {i, j} is a subset
of set [n] = {1, 2, ..., n}. Written under the sum, it means that we sum
over all such subsets of two vertices.) Extending the range of summa-
tion effectively means adding more summands. In our case, these extra
summands are the indicators of edges outside of E.

Why the sum does not change? Because all edges outside of E do not
exist, so their corresponding indicators equal zero. In short, we make the
step from the second sum to the third sum by adding a bunch of zeros.
This changes the number of summands but does not change the sum.

In the third sum, the range of summation is deterministic because we sum
over all possible pairs of vertices.

In the third sum, the summands are random because each indicator Iij
can be 0 or 1 depending on the random event of whether edge {i, j} exists
or not.

Finally, in the fourth sum we change summation over edges to the equivalent
summation over vertices. We make this step because summation over
pairs of vertices is inconvenient for computation.

Make the next step yourself: Assume that you have to write a computer
program that outputs the third sum. How will you do this? What
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about the fourth sum?

If you think about the question above, you will realize that it is not easy
to explain to a computer how to enumerate all vertex pairs (unless there
is already a command for it). Eventually, you will have to translate this
into two loops over vertices, and this is exactly what the fourth sum does.
The double summation corresponds to the two loops. The external sum-
mation runs over all possible i, the first element of {i, j}. Importantly, the
summation over j runs from i+ 1 and not from 1.

Make the next step yourself: Why does the summation over j run from
i+ 1?

The summation over j runs from i + 1 because in an undirected graph
edge {i, j} equals to edge {j, i}, and therefore Iij = Iji. We want to count
each edge only once. For example, if we have added I13 then we do not
need to add I31 anymore. When we sum over j from i+ 1, we make sure
that j > i and therefore we count each undirected edge exactly once.

Now we are ready to compute E(|E|), using the last expression (the fourth sum)
in (2.1). For this, we use the very powerful result from probability theory – the
linearity of expectations. The linearity of expectations says that the expectation
of a sum always equals to the sum of expectations. This holds true for any sum
of random variables, even if the random variables are dependent. This is a very
convenient property because we have written |E| as a sum of indicators, and
expectation of an indicator is just the probability of 1.

Altogether, here is how we obtain the expected number of edges:

E(|E|) (2.1)
= E

(
n∑

i=1

n∑
j=i+1

Iij

)
linearity of expectations

=
n∑

i=1

n∑
j=i+1

E(Iij) =
n∑

i=1

n∑
j=i+1

pij .

(2.3)

In words, the average number of edges is the sum of probabilities of all edges.
This sounds logical because indeed, when edges become more likely, the average
number of edges increases. Yet, this result is very elegant! Recall that the rules
of how edges appear can be quite complicated. The edges may be dependent
on many factors, and on each other. Nevertheless, the average number of edges
is simply the sum of probabilities, and this is true for any undirected simple
random graph!

One could guess the result in (2.3) intuitively. We chose to present a detailed
formal derivation because this way we can demonstrate how to use indicators.
Later we will use this technique in exactly the same way in more complicated
and less intuitive cases.
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2.2.3 Indicators not only of the edges

During the course, we will use indicators not only for the edges. We will use
indicators I of other objects, such as wedges and triangles. We will also use
indicators of events, for example, an ‘event’ could be that the number of edges is
not greater than, say, 100× the number of vertices. It is important to realize that
an indicator is always a Bernoulli random variable that has a binary outcome 0
or 1, and its expectation always equals to the probability of 1.

2.3 The degree of a vertex: definition

The degree of vertex i ∈ [n] is the number of vertices connected to i by an edge.

How to write this down as a formula?

Make the next step yourself. Can you write down the mathematical expression
for the set of all vertices connected to i by an edge?

We formally write the set of all vertices connected to i ∈ [n] by an edge as

{j ∈ [n] : {i, j} ∈ E}.

In words, this set includes vertex j ∈ [n] if and only if {i, j} ∈ E.

The degree of i is the size of this set. This is exactly a mathematical definition
of the degree:

Definition 2. Consider graph G = ([n], E). The degree of vertex i ∈ [n], denoted
by di, is the number of vertices connected to i by an edge. Formally:

di = |{j ∈ [n] : {i, j} ∈ E}| for any i ∈ [n]. (2.4)

Self-test. Write down the degrees of all vertices in the graph in Figure 2.2.

Figure 2.2: An undirected graph G = ([6], E).

Answer: d1 = 2, d2 = 3, d3 = 2, d4 = 3, d5 = 3, d6 = 1.
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2.4 The degree of a vertex as a sum of
indicators

We will now proceed to express the degree as a sum of indicators.

Notice the similarity between |E| and di. Both are the number of edges, only
|E| is the total number of edges in the graph, while di is the number of edges
attached to vertex i. This means that we can express di using indicators of
edges by following exactly the same steps as in Section 2.2.2 (even slightly easier
because we do not need the double summation). When we do this, we get:

di =

n∑
j=1

Iij , (2.5)

and

E(di) =
n∑

j=1

pij . (2.6)

These formulas hold for any simple undirected random graph.

Self-test: Derive (2.5) and (2.6) by repeating the steps that we used to obtain
(2.1) and (2.3).

2.5 The sum of all degrees

In this course we will often talk about the average degree of G = ([n], E). The
average degree of a graph with n vertices is given by the natural formula

µn =
d1 + d2 + · · ·+ dn

n
. (2.7)

In the numerator is the sum of all degrees, or the total degree. In this section we
will derive a very basic relation between the sum of all degrees and the number
of edges.

Make the next step yourself: As before, assume that G is a simple undirected
graph. Complete the next formula by writing on the right-hand side a
(very simple) expression that depends only on |E|:

n∑
i=1

di = . . . .

Answer:
n∑

i=1

di = 2|E|. (2.8)
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We will now obtain (2.8), first using an intuitive logical argument, and then
algebraically using indicators.

For the intuitive argument, let us look again at the example in Figure 2.2:

Imagine that we go through all vertices, one by one, adding their degree. We
start with vertex 1 and add degree d1 = 2. This is equivalent to saying that
we have added the two edges of vertex 1: edge {1, 2} and edge {1, 5}. So, in
fact, we simply count edges. Next, we move to vertex 2, and add 3 to the sum,
corresponding to the 3 edges of vertex 2. By doing so, we add edge {1, 2} again.
If we proceed this way, each edge {i, j} ∈ E will be counted exactly twice: as
part of di and as part of dj . Therefore, the sum of all degrees simply equals
twice the number of edges, which is exactly what is written in (2.8).

The intuitive argument in the previous paragraph is quite easy, but we need to
be very careful that we do not make a logical error, and it will become much more
complicated when we want to derive more intricate formulas. Indicators allow
to obtain the same result algebraically, using only formulas. Such derivation is
easier to check for errors, and it generalizes to many other cases.

Make the next step yourself: Can you derive (2.8) using indicators?

Hint: In

n∑
i=1

di, replace di by the right-hand side of (2.5).

The calculations are very easy:

n∑
i=1

di
(2.5)
=

n∑
i=1

n∑
j=1

Iij
compare to (2.2)

= 2|E|.

Factor 2 in the last expression appears because the summation over j is from 1
to n and not from i+ 1 to n, as it was in the fourth sum in (2.2).

Self-test. Can you explain why

n∑
i=1

n∑
j=1

Iij = 2

n∑
i=1

n∑
j=i+1

Iij?

If you have difficulty with this self-test, please check this on a small
example, and/or go back to the explanation of the fourth sum in Sec-
tion 2.2.2.
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2.6 Random variable Dn

Degrees of vertices, and variation thereof from one vertex to another, and most
basic characteristics of real-life networks. In this course we will often talk about
degree distribution. In this section we will define what exactly we mean by that.

Let G = ([n], E) be a simple undirected graph, and suppose we pick one vertex at
random out of the n vertices of G. Formally, let U be a discrete random variable
that takes values in [n] with equal probability 1/n. Then U is the number of a
randomly chosen vertex. This vertex U will have some degree, dU . Regardless
whether G is deterministic or random graph, the degree of a random vertex U
is a random variable, because of the randomness of the vertex number, U .

Notation dU is not very convenient, for example, because it does not include n.
In this course, dependence on n is important in this course because we often want
to take n → ∞. Therefore, we introduce a different notation: we will denote the
degree of a randomly chosen vertex by Dn. We emphasize that Dn ≡ dU , and
we will use dU sometimes in derivations.

Definition 3. Random variable Dn is the degree of a vertex chosen uniformly
at random from [n].

Self-test: Write down the degree distribution of D6 in our earlier example:

Answer:
D6 1 2 3

probability 1/6 2/6 3/6

If you have difficulty with this self-test, please revise the topic ‘Probability
distributions of a discrete random variable’

The probability distribution that you have just produced in the self-test, is
exactly what we call the degree distribution of the graph. This was a small
example, now we will give the general definition:

Definition 4. The degree distribution of graph G = ([n], E) is the probability
distribution of random variable Dn.

This definition holds for both deterministic and random graph G, and both
situations are important for us: the data of real-life networks are deterministic
because we already know which edges exist, but the models for real-life networks
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are random graphs because these networks emerged as a result of some random
process.

2.7 The average degree

If Dn is a random variable, then what is its expectation?

Make the next step yourself. Write down E(Dn).

Since Dn is the degree of a randomly chosen vertex, then, with probability 1/n,
vertex i will be chosen, resulting in Dn = di. When we substitute this into the
definition of E(Dn), we get:

E(Dn) = E(dU )
condition on U

=

n∑
i=1

P (U = i)E(dU |U = i) =
1

n

n∑
i=1

E(di) = E(µn).

(2.9)

Self-test. Recall the definition of µn in (2.7). Can you explain why in the
derivation above the last equality holds?

If you have difficulty with this self-test please revise the topic ‘Linearity
of expectations’.

The difference between E(Dn) and the average degree µn can be confusing, so
we want to make this clear in the bullets below:

• We will use notation µn = 1
n

n∑
i=1

di for the empirical average degree as

given in (2.7). We emphasize that if degrees are random, then µn is a
random variable, just as |E|.

• Random variable Dn is a degree of a specific, randomly chosen, vertex.
Factor 1/n appears in E(Dn) due to probability 1/n of each vertex, and
in µn due to averaging over n vertices.

• It always holds that E(Dn) = E(µn).

• If degrees are deterministic, then it holds that E(Dn) = µn. If degrees
are random, then µn is a random variable while E(Dn) is still a fixed real
number, therefore, being mathematical objects of a different type, they
cannot be equal.

Self-test. Compute E(Dn), in our earlier example:
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Is E(Dn) the same as µn in this example?

Answer: 2.667. Here E(Dn) and µn are the same because the degreres
are deterministic.

If you have difficulty with this self-test, please revise the topic ‘Expectation
of a discrete random variable’

2.8 Apply, revise, repeat

This completes our story about the mathematical formalization of a network as
a graph. The notions and techniques presented here are key to the course. In
what follows we will often apply these notions and techniques, assuming that
the students can explain and use them.

It is normal if later in the course the students have some struggles with this
material in the context of specific random graph models, for example, sums
of indicators or the source of randomness in Dn. We want to emphasize that
this is a natural learning process, and we strongly encourage you to revise the
corresponding sections of this chapter in light of the model/problem at hand.
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3 Modeling sparse networks with the
Erdős-Rényi random graph
Lezing 1, Nelly Litvak

3.1 Outline of this chapter

The title of this chapter contains two terms: sparse networks and Erdős-Rényi
random graph. We will start with the latter, and this will be our very first
random graph model in this course. We will define the model in Section 3.2 and
derive the formulas for number of edges and degrees in Section 3.3.

Then we continue with formal mathematical definition of sparse networks in
Section 3.4.

Our next question is: is the Erdős-Rényi random graph sparse? Turns out, we
can make it sparse using a powerful technique called parametrization. We will
explain this in Section 3.5.

Finally, in Section 3.6, we will state the convergence of the degree distribution
to the Poisson distribution in a sparse sequence of E-R random graphs.

3.2 Definition of the Erdős-Rényi random graph
model

How can we model a network as a random graph? Let us think about the simplest
possible way. It is time to come back to the self-test in Chapter 1:

Self-test. Assume you want to construct a random graph of n vertices. What
is the easiest way to place edges at random? Can you write a formal
mathematical description of this random graph model?

Let us now define the Erdős-Rényi random graph model.

Definition 5. The Erdős-Rényi (E-R) random graph is a simple undirected
random graph G = ([n], E), where for each i, j ∈ [n], i ̸= j, edge {i, j} exists
with the same probability p, independently of anything else. We denote this
random graph by ERn(p).
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Self-test. Compare the definition of ERn(p) to your own ideas of the simplest
possible model. Was it the same?

In general, in a random graph, each edge {i, j} is placed with probability pij ,
so it is very natural to simplify the model by letting all these probabilities be
the same. Formally, pij = p for all i, j ∈ [n]. We show this schematically
in Figure 3.1, where solid lines are existing connections and dashed lines are
possible but not realized connections.

Figure 3.1: Social network is modeled as an Erdős-Rényi random graph:
each friendship exists with probability p.

Oftentimes the description offered by students ends there, but this is not enough
because edges can be dependent on each other. Think about the triangles in
Figure 1.1d. If Anna has an edge to Boris and Cecile, then the edge between
Boris and Cecile is very likely to exist. The E-R model simplifies things further
by assuming that all edges are independent. If a social network is created by the
E-R model, then the edge between Boris and Cecile will not depend on whether
they both know Anna, it will simply randomly exist with probability p. The
independence of edges is a crucial property of the E-R model, as we will see
already in Section 3.3.

Self-test. Go back to your own ideas of the simplest possible model. Did you
explicitly include the independence of edges?

This is of course not how social networks form in reality, and we will come back
to it. Nevertheless, the E-R model is very useful exactly due to its simplicity. As
it often happens in science, deep understanding of the simplest possible mathe-
matical model is an important step towards explaining real-world phenomena.
In our case the phenomena in question will be sparseness of real-life networks
(this chapter), and presence of motifs (Chapter 4).
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It is useful to see what the E-R graph looks like for different n and different p,
so please look at the Network pages website:

https://www.networkpages.nl/CustomMedia/

When you scroll down, you will find a simulator of the E-R random graph.

Self-test. Using the simulator, look at several realizations of the E-R random
graph. (Ignore the λ for the moment, we will explain it in Section 3.5.)

First, alter n (Nr of vertices) for fixed p (Edge probability), and then alter
p for fixed n.

What looks exactly as you expected? Explain what exactly you expected
correctly, why you expected this, and what exactly in the figures confirms
that that your idea was correct.

What looks differently than you expected? If your initial intuition was
not correct, explain what you expected to be different, how you see that
it was not correct, and where was the mistake in your original logic.

3.3 Probability distribution of the number of
edges, and degrees in the E-R random graph

Pre-requisites. The following preliminary knowledge is required for this section:

• Binomial distribution (required).

In what follows we assume that you are able to define, recognize and apply
the binomial distribution. If you feel that this is not the case, please revise
your knowledge before proceeding further.

Consider a random graph G = ([n], E) and assume that this graph is ERn(p).

What can we say about the number of edges |E|? Here the indicators are really
useful. Recall from (2.2) that |E| is a sum of indicators:

|E| =
n∑

i=1

n∑
j=i+1

Iij .

In ERn(p), edges are independent and exist with the same probability. In other
words, Iij are independent and identically distributed Bernoulli random varia-
bles. This is very informative for us because we know that the sum of independent
and identically distributed Bernoulli random variables has a Binomial distribu-
tion. The ‘success probability’ in this case is p, and the ‘number of Bernoulli
experiments’ is the maximal possible number of edges n(n−1)

2
.
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Self-test. Can you explain why the maximum of |E| is n(n−1)
2

?

This question is important because when we use a sum of indicators, we
will often need to compute how many indicators are there in the sum. We
ask you to pause here until you can formulate the answer in full sentences.
If you are not confident at the moment, the hint below may help you to
proceed.

Hint. The number of edges |E| is maximal when each pair {i, j} is in E.
Now, it is useful to realize that each edge {i, j} is simply a subset of two
elements of [n]. So, the maximal possible |E| is the same as the number
of possible subsets of size 2 out of n elements. This number goes by the
name ‘n-choose-2’ and has notation(

n

2

)
.

If you are not sure why
(
n
2

)
= n(n−1)

2
, please look it up on the Internet.

We use the symbol A ∼ F to state that random variable A has distribution F .
Then we write:

|E| ∼ Binomial

(
n(n− 1)

2
, p

)
.

The expectation and variance of the Binomial distribution in our case become:

E(|E|) = n(n− 1)

2
p, Var(|E|) = n(n− 1)

2
p(1− p).

What about the degree? Consider the degree of a fixed vertex i ∈ [n].

Make the next step yourself. What is the probability distribution of di?

Hint. Look at formula (2.5).

Since the graph is simple, so edge {i, i} does not exist, we rewrite (2.5) as

di =

n∑
j = 1
j ̸= i

Iij , for any i ∈ [n].

We now see that di is the sum of n − 1 independent identically distributed
indicators, therefore

di ∼ Binomial(n− 1, p),

E(di) = (n− 1)p,

Var(di) = (n− 1)p(1− p), for any i ∈ [n].
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Finally, Dn is distributed as di with probability 1/n, and all di are identically
distributed, so we have

Dn ∼ Binomial(n− 1, p).

3.4 Mathematical definition of a sparse network

What is a sparse network and how can we express this in a formula? We start
with an informal definition we had before:

A network is sparse if the degrees of vertices are small compared to the network
size.

Now we will replace the words by mathematical expressions, wherever we can,
based on the previous material of this reader.

The network size is clearly n.

The next question is: which mathematical notion describes ‘the degrees of ver-
tices’? There are different ways of doing this. The easiest choice is just the
average degree µn.

Then we arrive at the following:

A network is sparse if µn is small compared to n.

It remains to define what it means that µn is ‘small’ compared to n, and this is
a somewhat tricky question.

Let us look at some examples.

• Suppose n = 1000 and µn = 2. We will probably all agree that the network
is sparse.

• Now suppose n = 1000 and µn = 500. We will probably all agree that the
network is quite dense, and definitely is not sparse.

• What about n = 1000 and µn = 60? This is quite uncertain because 60 is
not such a small number, but it is also quite small compared to 1000.

This example illustrates that when n is fixed, we cannot really define what
‘sparse’ means. Any decision whether the network is sparse when n = 1000 and
µn = 60, will be quite arbitrary. This is why, as we often do in mathematics, we
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dismiss the notion of sparseness for fixed n altogether. Instead, sparseness is an
asymptotic notion.

(The words ‘asymptotic notion’ may sound scary but you are definitely well
familiar with common asymptotic notions in mathematics such as O(1) or o(x)
as x → ∞. For example, f(x) = O(1) if f(x) is bounded by a constant for
all x ∈ R. When you look at Definition 6 below, you will immediately see the
similarity.)

‘Asymptotic notion’ means that ‘sparse’ networks are defined in terms of a limit
of µn when n → ∞. This is why we do not talk about a ‘sparse graph’ but about
a ‘sparse sequence of graphs’. It is a sequence because we consider different
n = 1, 2, 3, . . ., and assume there is a graph Gn = ([n], En) for each n. Once we
have a graph sequence, we can view µn as a function of n, and define sparseness
in terms of the limit of this function as n → ∞. More specifically, we will say
that:

A graph sequence is sparse if µn remains bounded as n → ∞.

We are almost there, except for the fact that in the random graph model the
degrees can be random, and then µn is random as well. The limit of a random
variable is a subtle notion, and there are different ways to deal with this. At
this point, to keep things simple, we define a sparse sequence of random graphs
using E(µn) = E(Dn) instead of µn.

The formal definition of a sparse graph sequence is given below.

Definition 6. A graph sequence Gn = ([n], En) is sparse when there exists
constant M > 0 such that

µn ≤ M, for all n=1,2,. . . if d1, d2, . . . , dn are deterministic,

or
E(µn) = E(Dn) ≤ M, if d1, d2, . . . , dn are random.

Remark 7. Many sparse random graph sequences satisfy a stronger condition,
namely that µn converges to a limit. If the degrees are random, so µn is random
as well, it is usually assumed that µn converges to its limit ‘in probability’. In
that spirit, a neater definition of sparseness is as follows: a network is sparse
when µ = OP(1), that is, for any ε, δ > 0, holds: limn→∞ P(µn/n

δ > ε) = 0.
This is ‘neater’ than using E(µn), as we did in Definition 6, because sparse-
ness is defined through the empirically observed degrees rather than through their
theoretical expectation.

We emphasize that boundedness or convergence of E(µn) is technically not equi-
valent to the boundedness or convergence of µn when degrees are random, even
though most of the time both will hold together in this course.
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At this point we chose to work with E(µn) to define sparseness because it es-
sentially captures the same phenomenon without diving into the subtleties of
convergence of random variables.

In the light of Definition 6, let us come back to the question whether the network
is sparse when n = 1000 and µn = 60. Strictly according to the definition, we
cannot answer this question for the single n = 1000, we need to know how µn

changes with n in the entire sequence Gn. If, say, µn ≤ 70 for all n = 1, 2, . . .,
then this graph sequence is sparse. If µn = 0.06n, then the graph sequence is not
sparse.

Self-test. Can we say that a network is sparse when n = 1000 and µn = 2? Try
to answer yourself, then look at the answer provided in the next paragraph.

Formally, the question in the last self-test is ill-posed. We cannot say about a
single network instance whether it is sparse or not, we must look at the entire
sequence. For example, if µn = 0.002n then µn → ∞ as n → ∞, and the graph
sequence is not sparse.

That said, in practice, when we see a real-life network with 1000 nodes and on
average 2 connections per node, it is reasonable to view it as an instance of a
sparse sequence, and usually we will choose a sparse sequence of random graphs
to model networks like that. We need asymptotic notions for the correct and
useful mathematics, but inspiration for these notions still lies in what we observe
in real-life networks of fixed size.

3.5 Parametrization for creating a sparse
sequence of Erdős-Rényi random graphs

Let us now come back to ERn(p), n = 1, 2, . . .. Is this sequence sparse? Accor-
ding to Definition 6 we have to look at

E(µn) = E(Dn) = (n− 1)p

as a function of n.

At the first sight it looks like µn is linear in n. However, it does not need to be!
We can change this by using a powerful technique called parametrization. The
idea is to not view p as a given constant in (0, 1) but make it a function of n, so
p = p(n). Why is it useful? Because, for instance, different p(n) will result in
different µn as a function of n.

Make the next step yourself. Do you see how to choose p = p(n) so that the
sequence ERn(p(n)) becomes sparse?
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For the sparse sequence we need that µn is bounded. We can achieve this by
setting

p := p(n) =
λ

n
, λ > 0.

This is exactly the same λ that you saw in the simulator in Section 3.2.

Make the next step yourself. Write down the distribution, the expectation and
the variance of |E|, di, Dn, i ∈ [n] in ERn(λ/n).

For |E| in ERn(λ/n) we obtain:

|En| ∼ Binomial

(
n(n− 1)

2
,
λ

n

)
, E(|E|) = (n− 1)λ

2
,

so the mean number of edges grows linearly with n.

For di in ERn(λ/n) we obtain:

di ∼ Binomial

(
n− 1,

λ

n

)
, E(di) =

n− 1

n
λ = λ

(
1− 1

n

)
,

and

lim
n→∞

E(di) = λ.

Let us now verify that Definition 6 of a sparse network holds. The degrees di
are random, so µn is random as well, and we take the expectation:

E(µn) = E(Dn) =
(n− 1)λ

n
= λ

(
1− 1

n

)
< λ,

and hence now the graph sequence is sparse. Moreover,

lim
n→∞

E(µn) = λ,

so we have convergence of E(µn) to λ, which is stronger than boundedness.

Having p = λ
n

means that the probability that vertex i connects to vertex j
decreases when the network grows, and the average number of connections of
vertices remains approximately constant. This is in fact quite a natural modeling
assumption. For example, in a social network an individual typically will not get
many more friends when the network becomes larger. Rather, the probability of
connection of one individual to another will decrease because there will be too
many total strangers in terms of location, interests, etc.
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3.6 Convergence of the degrees to the Poisson
distribution in a sparse sequence of E-R
random graphs

Since di ∼ Binomial
(
n− 1, λ

n

)
, and

lim
n→∞

E(di) = lim
n→∞

(n− 1)
λ

n
= λ,

the distribution of di converges to the Poisson(λ) distribution:

lim
n→∞

P(di = x) =
λk

k!
e−λ, x = 0, 1, . . . . (3.1)

Self-test. Can you explain what (3.1) says and why it holds? If not, it is useful
to look up convergence of the binomial distribution to the Poisson(λ)
distribution. You can also derive (3.1) yourself, it is not at all difficult.
You will need to use the formula for the binomial distribution:

P(di = x) =

(
n− 1

x

)
px(1− p)n−1−x, x = 0, 1, . . . , n− 1,

and the standard limit

lim
n→∞

(
1− λ

n

)n

= eλ.

Convergence to the Poisson distribution is a very good news because this distri-
bution is very well understood and has many nice properties. We will often see
convergence to the Poisson distribution in the course when a sum of indicators
(such as the degree) has a finite expectation in the limit when n → ∞.
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4 Counting motifs in random graphs
Lezing 2, Nelly Litvak

In real-life networks we often observe so-called motifs such as triangles in Fi-
gure 1.1d, but also wedges, cycles, and cliques, see Figure 4.1. (A clique is a set
of vertices that are all connected to each other, like a group of close friends in a
school class.) Notice that a triangle is a cycle, but also a clique of three.

Figure 4.1: (a) wedge; (b) triangle; (c) 4-cycle; (d) 4-clique: all four verti-
ces are connected to each other by an edge.

Motifs like this are defined mathematically as connected induced subgraphs, and
in network science they are also often called graphlets. The word ‘induced’ means
that if an edge is not in a graphlet, then this edge is also not in E. The word
‘connected’ means that in a graphlet, there is always a path of edges between
any pair of vertices.

Such graphlets are very informative. For example, as we discussed before, social
networks have many triangles. On the other hand, planned networks such as
railways will usually not have a triangle between three neighboring stations!
Rather, there will be longer ‘cycles’ of stations that offer detours, for example,
in case of disruption.

In this chapter we will learn how to count motifs in random graphs. The Erdős-
Rényi (E-R) random graph is an ideal model to start with due to its simplicity.
In particular, we will discover how many triangles and cycles one may expect to
see in a sparse E-R random graph.

For a motif of any form, the analysis of its count follows exactly the same techni-
que as counting edges, using indicators. In this course we will show only the first
basic steps of this analysis, and we expect all students to understand them com-
pletely. In Section 4.1 we will demonstrate how to compute the mean number of
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wedges. In Section 4.2 we will extend this analysis to any motif. In Section 4.3
we go back to the sparse graph and discuss the number of motifs when n → ∞.

4.1 The number of wedges

We again work with a simple undirected graph G = ([n], E). We will derive the
mean number of wedges using indicators.

The first question is, what is the number of wedges in formal mathematical
terms?

Similarly to |E| and di, the number of wedges is the size of a set that contains
all wedges. We denote the set of all wedges by W:

W = {all wedges in G}.

If we want to mathematically define the set of wedges, we have to start with
defining what a wedge is in mathematical terms.

4.1.1 Mathematical definition of a wedge

Any wedge consists of three vertices and two edges. Consider the small graph in
our earlier example:

Here, for instance, 6− 4− 5 is a wedge. How can we write this down?

Make the next step yourself. Denote the wedge 6−4−5 in the example by w645

and write its formal definition.

A wedge 6− 4− 5 is an ordered set of three vertices w645 = (6, 4, 5). We use the
round brackets to denote the ordered set. The order is important because this
is the only way to show the special position of vertex 4. When we change the
position of this vertex, we get a different wedge, for example, wedge (4, 5, 6) is
not the same as (6, 4, 5). Indeed, as you can see, wedge (4, 5, 6) does not exist in
this graph.

Of course, not every ordered set of vertices is a wedge. We have wedge w546 only
when {4, 5}, {4, 6} ∈ E and {5, 6} /∈ E.

We arrive at the following formal definition of a wedge:
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Definition 8. A wedge is an ordered set of three vertices, such that the second
vertex is connected by an edge to the first and the third vertex, but the first and
the third vertex are not connected. Formally, for all i, j, k ∈ [n],

wijk = (i, j, k) such that {i, j} ∈ E, {i, j} ∈ E, {i, k} /∈ E.

4.1.2 Indicator of a wedge

Denote by Iwijk the indicator of a wedge. Indicator Iwijk is 1 if (i, j, k) is a wedge,
and 0 otherwise. Whether (i, j, k) is a wedge or not depends only on the edges
between these vertices, so Iwijk is completely defined by the edges {i, j}, {j, k},
{i, k}. In fact, we can express Iwijk through the indicators of the edges.

Make the next step yourself. Write down Iwijk through indicators of edges Iij , Ijk, Iik.
The answer is given below. Use the hint.

Hint: Use a product.

We have:

Iwijk = IijIjk(1− Iik), i, j, k ∈ [n]. (4.1)

Self-test. Verify that the formula (4.1) is correct.

Hint: First verity (4.1) when (i, j, k) is a wedge. Then see what changes
when (i, j, k) is not a wedge.

The answer is found by a simple enumeration of all combinations of Iij , Ijk, Iik.
Even if you experience difficulty with this question, do not give up, you
can do it!

4.1.3 Formal definition of the set of wedges

We will now proceed writing down the set of all wedges W. Since a wedge is an
ordered set of three vertices, set W consists of such ordered triples (i, j, k), but
it must include only those triples that form a wedge, and it must include each
wedge exactly once.

Self-test. Will any ordered set (i, j, k) correspond to a different wedge? If not,
which wedges will be equal? Write down mathematically your statement
about equality or inequality of wedges. We give the answer in the next
paragraph.
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Clearly, swapping the positions of the first and the third veetex in a wedge does
not change anything, it is still the same wedge. In our small example,

w645 = w546.

To make sure that we list each wedge exactly once we will impose that between
vertices 5 and 6 the vertex with a smaller number goes first, so in W we will
include w546 but not w645.

We are now ready to write down the mathematical definition of W.

Make the next step yourself. Write down the formal definition of the set of all
wedges W. If you cannot do this, then look at the answer in (4.2) below,
and complete the self-test after (4.2), in a written form, without skipping
any bullet.

Based on the discussion above, we have:

W = {(i, j, k) : i, j, k ∈ [n], i < k, {i, j} ∈ E, {j, k} ∈ E, {i, k} /∈ E}. (4.2)

Self-test. Write down the answers to the following questions:

1. Why do we write the external (red) curly brackets?

2. Why is (i, j, k) in round brackets?

3. Why do we write i, j, k ∈ [n]?

4. Why do we write i < k?

5. Why do we write {i, j} ∈ E, {j, k} ∈ E, {i, k} /∈ E?

Answer:

1. Because W is a set.

2. Because W is a set of wedges, and each wedge is an ordered set of
three vertices. The round brackets are used to denote an ordered set.

3. Because any triplet of vertices can form a wedge.

4. Because wijk = wkji. By imposing i < k, we count each wedge
exactly once.

5. Because (i, j, k) is a wedge if and only if the graph has edges {i, j}
and {j, k} and does not have edge {i, k}.
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4.1.4 The number of wedges

We are interested in the number of wedges, which is the size of the set of all
wedges, |W|. We will write this using indicators.

Denote by Iwijk the indicator of wijk. Then we have

|W| =
n∑

i=1

n∑
j=1

n∑
k=i+1

Iwijk. (4.3)

We hope you appreciate that writing the range of the three summations is easy
because we did a thorough preliminary work of defining W. Let us take a closer
look. The range of summation over vertices is determined by the statement
i, j, k ∈ [n], i < k in (4.2), while the indicator is 1 when (i, j, k) is a wedge.

From (4.3) we obtain the mean number of wedges, using the linearity of expecta-
tions:

E|W| =
n∑

i=1

n∑
j=1

n∑
k=i+1

E(Iwijk). (4.4)

We can go one step further, using (4.1):

E|W| =
n∑

i=1

n∑
j=1

n∑
k=i+1

E(Iwijk) =
n∑

i=1

n∑
j=1

n∑
k=i+1

E (IijIjk(1− Iik)) . (4.5)

Here E (IijIjk(1− Iik)) is the probability that (i, j, k) is a wedge, so there is
a very strong similarity to the formula for the mean number of edges (2.3).
Unfortunately, in general, in (4.5), we have to stop here, and we cannot right
away rewrite E (IijIjk(1− Iik)) through the edge probabilities.

Self-test. Why can’t we replace E (IijIjk(1− Iik)) by pijpjk(1− pik)? The ans-
wer is in the next paragraph.

The reason is that, in general, E (IijIjk(1− Iik)) is not equal to E(Iij)E(Ijk)E(1−
Iik). The exception is the case when the edges are independent, then the equality
does hold. This is why it is very easy to find E(|W|) in the E-R random graph,
as we shall see in the next section.

4.1.5 The mean number of wedges in the E-R random
graph

In the E-R random graph, the edges are independent. This pays off greatly when
we derive the formula for the mean number of motifs. In particular, for the
wedges we get:
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E(|W|) =
n∑

i=1

n∑
j=1

n∑
k=i+1

E (IijIjk(1− Iik)) =

n∑
i=1

n∑
j=1

n∑
k=i+1

p2(1− p). (4.6)

In the last summation, all terms are the same, so the final answer is p2(1 − p),
multiplied by the number of terms.

Self-test. How many terms are there in the last summation in (4.6)? The answer
is in the next paragraph.

There are n(n− 1)(n− 2) ordered triples of vertices, and we need to divide this

number by 2 because i < k. The number n(n−1)(n−2)
2

is the number of possible
wedges in the graph. So, we get

E(|W|) = n(n− 1)(n− 2)

2
p2(1− p).

This formula is very simple, and it follows directly from the fact that |W| is a
sum of indicators. This generalizes to the number of graphlets of any form in
the E-R random graph.

4.2 The mean number of graphlets in the E-R
random graph

Similarly as we did with the wedges, we can write down the number of graphlets
of any form as a sum of indicators. In the most general terms, let g be a graphlet
of r vertices and m edges. Denote by G the set of such graphlets, and let Igi1i2...ir
be the indicator of graphlet (i1, i2, . . . , ir). Then

|G| =
∑

all (i1, i2, . . . , ir) ∈ [n]r

that can form distinct graphlets

Igi1i2...ir (4.7)

and

E(|G|) =
∑

all (i1, i2, . . . , ir) ∈ [n]r

that can form distinct graphlets

E(Igi1i2...ir )

=
∑

all (i1, i2, . . . , ir) ∈ [n]r

that can form distinct graphlets

P(Igi1i2...ir = 1).
(4.8)
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Make the next step yourself. Write down the expression for P(Igi1i2...ir = 1) in
the E-R random graph when r has m edges.

In the E-R random graph, P(Igi1i2...ir = 1) is the product that has multiple p for
each existing edge in g, and multiple (1− p) for each edge not in g. The number

of non-existing edges in g is r(r−1)
2

−m. (Why?). Then (4.8) becomes:

E(|G|) = [number of possible distinct graphlets]× pm (1− p)
v(v−1)

2
−m. (4.9)

For example, denote by ∆ the set of triangles in the E-R random graph. Then

E(|∆|) = n(n− 1)(n− 2)

6
p3. (4.10)

Self-test. 1. Explain (4.10).

2. Compute the mean number of induced squares in the E-R random
graph, as in Figure 4.1(c).

3. Compute the mean number of 4-cliques in the E-R random graph,
as in Figure 4.1(d).

Answer.

1. First we count the number of ordered triples (i, j, k) that can form
distinct triangles. Since the order of vertices in a triangle plays no
role, and there are 6 possible ways to order a triplet, we have that
the total number of possible triangles, is n(n−1)(n−2)

6
. Next, all three

edges are present, so we must multiply n(n−1)(n−2)
6

by p3.

2. n(n−1)(n−2)(n−3)
8

p4(1− p)2.

3. n(n−1)(n−2)(n−3)
4!

p6.

4.3 The number of graphlets when n → ∞ in a
sequence of sparse E-R random graphs

Recall that a sparse E-R random graph ERn(λ/n) models the phenomenon that
the average degree remains bounded when the network grows. Many real-life
networks are sparse, but they have graphlets as well, for example, social networks
will have many triangles. In this section we will see what happens to the number
of graphlets in ERn(λ/n) when n → ∞.
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It turns out that we can say a lot about the distribution of the number of
graphlets as n → ∞, by looking only at the mean number of graphlets. This
is because the number of graphlets is always the sum of indicators, as we wrote
explicitly in (4.7).

Moreover, in an E-R random graph, the probability of a graphlet does not depend
on the vertices involved, all graphlets of the same form have the same probability.
Hence, in the E-R random graph all indicators in (4.7) are identically distributed.

If indicators were also independent, as it was the case for the indicators of edges
Iij , then their sum would have a binomial distribution.

Make the next step yourself. Look back at the formula for the number of wed-
ges (4.3). Does |W| follow a Binomial distribution?

Answer: No. The wedges are not independent. For example, wedges
(1, 2, 3) and (1, 2, 4) share edge {1, 2}, and so they are dependent through
this edge. If wedge (1, 2, 3) exists, it means that edge {1, 2} exists, and
this makes wedge (1, 2, 4) more likely. Formally, P(Iw124 = 1) = p2(1 − p),
but P(Iw124 = 1|Iw123 = 1) = p(1− p).

(Do you have troubles explaining the last formula? Then draw the four
vertices and make (1, 2, 3) a wedge. Given that (1, 2, 3) is already a wedge,
what is now the probability that (1, 2, 4) is a wedge as well?)

In (4.7), indicators are not independent, they influence each other through shared
edges. Nevertheless, loosely speaking, they become ‘almost’ independent as
n → ∞. For example, Iw123 in (4.3) is dependent only on the indicators that
involve either {1, 2}, or {2, 3}, or {1, 3}. There are only O(n) of such indicators.
But there are in total O(n3) indicators of wedges, so Iw123 is independent of most
of the summands in (4.3).

Same reasoning applies to any finite graphlet in an E-R random graph. The
idicators are not independent, but each indicator is independent of the great
majority of the others. Intuitively, this is why, as n → ∞, |G| has the same
limiting properties as a binomial random variable.

In the remainder of this section we will present most basic limiting properties of
|G|. If you are comfortable with limiting properties of the Binomial distribution,
then these results will sound very familiar to you. Proving these results however
might be technical because of the dependencies between the graphlets. The
book by Remco van der Hofstad1 contains many useful proof techniques, e.g.
Theorems 2.4, 2.5.

1Random graphs and complex networks, Cambridge University Press, 2016
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4.3.1 The limit of E(|G|)

In ERn(λ/n), formula (4.9) becomes

E(|G|) = [number of possible distinct graphlets]×
(
λ

n

)e (
1− λ

n

) r(r−1)
2

−m

.

(4.11)

Here is what we can say about this formula:

• The first term, the number of possible distinct graphlets, is of the order nr

because choice of every vertex has the order of n options.

• The second therm,
(
λ
n

)m
, is of order n−m.

• For the third term, it holds that

lim
n→∞

(
1− λ

n

) r(r−1)
2

−m

= 1,

so this term will not affect the limit.

Altogether, the limit of E(|G|) will be determined by the main term of order
nr−m. Then there are only three options:

1. r < m, and limn→∞ E(|G|) = 0,

2. r = m, and limn→∞ E(|G|) = µg > 0,

3. r > m is possible only if r = m+1 since a graphlet is connected. (Why is
this statement true?) Then E(|G|) is of order n.

In the next subsections we will consider these cases one by one.

4.3.2 Vanishing graphlets: limn→∞ E(|G|) = 0

As an example, consider the number of 4-cliques as in Figure 4.1(d). Denote the
set of 4-cliques in a graph by C4. Then we have

lim
n→∞

E(|C4|) = lim
n→∞

n(n− 1)(n− 2)(n− 3)

4!

λ6

n6
= 0.

So, on average, in the limit, the number of 4-cliques in a sparse E-R random
graph is zero.

This is on average, but when we generate an instance of such a random graph,
we do not see an average, we see only one specific realization. Can we conclude
that typically in such realization there will be no 4-clique? The answer is yes,
but we need a little bit of work to prove it mathematically.
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First of all, what do we want to prove? We are interested whether a random
graph ERn(λ/n) contains a 4-clique.

Make the next step yourself. Express the event [a random graph contains a 4-
clique] mathematically using random variable |C4|.

Saying ‘a graph contains a 4-clique’ is equivalent to saying ‘the number of 4-
cliques is more than zero’, or there is at least one 4-clique. Mathematically we
can write is as

|C4| ≥ 1.

If a graph typically will not contain 4-cliques then the probability of this event
should be very small. So, we are interested in

P(|C4| ≥ 1),

and we want to show that this probability converges to zero as n → ∞.

Since we know E(|C4|), the appropriate proof technique uses the Markov ine-
quality. This is a very well-known inequality in the probability theory, given
below.

Theorem 9 (Markov inequality). Let X be a non-negative random variable,
E(X) < ∞. Then for any a > 0 it holds that

P(X ≥ a) ≤ E(X)

a
.

In our case, we get

P(|C4| ≥ 1) ≤ E(|C4|)
1

= E(|C4|),
so

lim
n→∞

P(|C4| ≥ 1) ≤ lim
n→∞

E(|C4|) = 0.

The conclusion is that in a sparse E-R random graph, when n grows, we will
almost never see a 4-clique.

In ERn(λ/n), exactly the same result will hold for any graphlet that contains
more edges than vertices.

Self-test. Can you intuitively explain why the probability to see a 4-clique re-
duces as n grows?

Possible answer. The number of possible cliques will grow with n, but
the probability to get all 6 edges in the clique will reduce faster.
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This is already not very good news in terms of modeling e.g. social networks.
Clearly, in a real-life social network, when the network grows, the number of
completely connected small groups should grow as well.

4.3.3 Poisson number of graphlets: limn→∞ E(|G|) = µg

As an example, consider the number of triangles. In ERn(λ/n), we have

lim
n→∞

E(|∆|) = lim
n→∞

n(n− 1)(n− 2)

6

λ3

n3
=

λ3

6
.

So, in the limit, the mean number of triangles is a constant.

Self-test. Do you think that the number of triangles will be a constant in any
realization of the random graph? The answer is given in the next parag-
raph.

The number of triangles itself is of course not a constant, it is a random variable,
and it will be different in each realization. We know that its mean converges to
a constant. But what about its probability distribution?

We know that the Binomial
(

n(n−1)(n−2)
6

, λ3

n3

)
distribution converges to the

Poisson
(

λ3

6

)
distribution. We also know that the distribution of |∆| is not

Binomial because some triangles are dependent through their shared edges. Ne-
vertheless, it turns out that this moderate dependency does not destroy the
convergence to the Poisson distribution, only the proof of this convergence be-
comes (much) harder. At this point we will state the convergence result without
proof.

Theorem 10. In ERn(λ/n), as n → ∞, the distribution of the number of

triangles, |∆|, converges to the Poisson
(

λ3

6

)
distribution. Specifically,

lim
n→∞

P(|∆| = x) =
1

x!

(
λ3

6

)x

e−
λ3

6 , x = 0, 1, 2, . . . .

Convergence to the Poisson distribution holds for |G| when g has the same num-
ber of vertices and edges, with the Poisson parameter equal to limn→∞ E(|G|).

The implication of Theorem 10 is that in every realization of ERn(λ/n) we will
see some random number of triangles that will approximately follow a Poisson
distribution with fixed mean. In particular, the number of triangles will not grow
with n. In other words, compared to the network size, triangles will become rare.
In the context of modeling real-life networks, especially social networks, this is
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not very realistic because such networks typically contain many triangles. This
is one of the drawback of the sparse E-R random graph in terms of modeling
real-life networks.

4.3.4 Law of large numbers: E(|G|) = O(n)

Pre-requisite knowledge:

The variance of a linear function of random variables (required to understand
why the result in Theorem 11 holds).

As an example, let us again look at the number of wedges. In ERn(λ/n), we
have

E(|W|) = n(n− 1)(n− 2)

2

λ2

n2

(
1− λ

n

)
.

This number goes to infinity linearly with n. Then what number of wedges would
we typically see in ERn(λ/n)? Clearly, |W| is random, but it turns out that |W|
is of the same order of magnitude as its average.

To see this, it is more informative to divide E(|W|) by n so that the resulting
expression converges to a finite limit:

lim
n→∞

E(|W|)
n

= lim
n→∞

n(n− 1)(n− 2)

2n

λ2

n2
=

λ2

2
.

It turns out that |W|
n

converges to the same limit λ2

2
as its average. Since |W|

is a random variable, there are several ways to define what convergence means.
Here we use so-called convergence in probability. We will first state the theorem,
and then will explain its meaning and why it holds.

Theorem 11. In ERn(λ/n), as n → ∞, the scaled number of wedges, |W|
n

,

converges in probability to λ2

2
. This convergence in probability means that for

any ε > 0,

lim
n→∞

P
(∣∣∣∣ |W|

n
− λ2

2

∣∣∣∣ > ε

)
= 0.

This result is called the Law of Large Numbers for |W|.

Theorem 11 states that when n grows, the deviation of |W|
n

from λ2

2
by more

than ε becomes unlikely: the probability of this event goes to zero. Informally,
|W|
n

comes closer and closer to λ2

2
when n → ∞.

Does this mean that |W| ≈ λ2

2
n? No. Random variable |W| will vary a lot

around λ2

2
n from one realization to another. However, these deviations from
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the main, linear in n, term λ2

2
n, will be of the order smaller than n (to be

precise, the strandard deviation of |W| is of the order
√
n, as we will establish

later in this section).

Theorem 11 is called ‘the law of large numbers’ for |W| because the classical
law of large numbers states that a sum of independent identically distributed
random variables, divided by the number of terms, converges in probability to
its mean. Theorem 11 is similar in spirit because |W| is a sum of indicators, and
n is the order of its main term.

Theorem 11 is proved using another well-knwon result in probability theory, the
Chebychev inequality. We state this inequality in the next Theorem.

Theorem 12 (Chebychev inequality). Let X ∈ R be a random variable such
that E(X) < ∞ and Var(X) < ∞. Then for any ε > 0 it holds that

P(|X − E(X)| > ε) ≤ Var(X)

ε2
.

Theorem 11 is proved by applying Chebychev’s inequality, and taking the limit:

lim
n→∞

P
(∣∣∣∣ |W|

n
− λ2

2

∣∣∣∣ > ε

)
≤ lim

n→∞

Var
(

|W|
n

)
ε2

.

Since ε is a constant, the result is proved after we prove that limn→∞ Var
(

|W|
n

)
=

0.

From the properties of the variance, we know that

Var

(
|W|
n

)
=

1

n2
Var(|W|),

so the main task in the proof is computing Var(|W|).

We know that the Binomial
(

n(n−1)(n−2)
2

, λ2

n2

)
distribution has variance of the

same order of magnitude n as the mean. The number |W| does not follow the
Binomial distribution because some wedges are dependent. Computing Var(|W|)
is the tricky technical part of the proof. Nevertheless, it turns out that, since
most wedges are independent, the moderate dependence does not change the
order of magnitude of Var(|W|). So, Var(|W|) is of the order n (hence, the

standard deviation is of the order
√
n). It follows that limn→∞

Var(|W|)
n2 = 0.

Similar laws of large numbers hold for any graphlet in ERn(λ/n) that has more

vertices than edges. Any such graphlet has r = m + 1, and the fraction |G|
n

converges in probability to the limit of its mean.
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5 Vrijwel zekere garantie dat een stochastische
graaf is verbonden
Lezing 3, Nelly Litvak

Veel belangrijke levensechte netwerken zijn verbonden. Op het internet kan
informatie van elke router naar elke andere router worden verzonden. Maar
als we een netwerk modelleren als een stochastische graaf en dan willekeurig
verbindingen maken, zal deze graaf dan nog steeds verbonden zijn? In deze
sessie zullen we deze vraag beantwoorden voor de Erdős-Rényi stochastische
graaf. De eenvoud van dit E-R model zal ons helpen om de eerste stappen te
beredeneren: in de E-R stochastische graaf hebben we n knooppunten, en elk
paar knooppunten is met elkaar verbonden met kans p. Laten we nu eens kijken
naar de extreme gevallen, iets wat wiskundigen vaak doen wanneer ze tegen een
nieuw probleem aanlopen. Wanneer p = 0, dan zullen er geen verbindingen zijn,
en zal de graaf niet verbonden zijn. Als p = 1, dan zal elk paar knooppunten
met elkaar verbonden zijn, en is de graaf dus vanzelfsprekend verbonden. Dus,
als p groter wordt, dan wordt de kans dat de graaf verbonden is ook groter. Als
we dus p groot genoeg kiezen, kunnen we er vrijwel zeker van zijn dat de graaf
verbonden is. Maar wat is groot genoeg? Gebaseerd op Figuren 5.1a en 5.1b
kunnen we misschien aannemen dat p = 0.05 zal voldoen? Of zal het afhangen
van de waarde van n? We zullen samen deze prachtige wiskundige puzzel op
gaan lossen. En er is meer! Het antwoord zal leiden tot een fascinerend verhaal
over wat stochastische grafen gemeen hebben met water dat in ijs verandert.

47



(a) E-R random graph with n = 100, p =
0.04. The graph is disconnected.

(b) E-R random graph with n = 100, p =
0.05. The graph is connected.

Figuur 5.1
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6 Modelleren van schaalvrije netwerken
Lezing 4, Nelly Litvak

Hoeveel verbindingen heeft een knoop in een netwerk? Een van de meest ver-
bazingwekkende eigenschappen van levensechte netwerken is dat het aantal ver-
bindingen van een knoop, dit noemen we de graad van een knoop, heel erg kan
variëren tussen verschillende knopen. Sommige knopen hebben maar een paar
verbindingen, terwijl anderen er wel miljoenen kunnen hebben. In de introduc-
tie hebben we al gezien dat dit het geval is voor de Webgraaf (zie Figuur 1.1c).
Maar ook het retweet netwerk in Figuur 1.1a heeft deze eigenschap: de meeste
twitteraars hebben geen retweets, maar sommige ‘sterren’ in het twitteruniver-
sum worden heel vaak geretweet! Op dezelfde manier is het internet in Figuur
1.1b ook een schaalvrij netwerk. In de wiskunde kunnen we dit modelleren met
de zogenoemde power law verdeling. Deze power law is geformuleerd als volgt:

# knopen met k verbindingen

totaal # knopen
≈ constante · k−τ , τ > 1.

We noemen deze relatie een power law door de negatieve exponent (power) van
k. Je kan de power law herkennen door het te plotten op een zogenoemde log-log
schaal, zoals we gedaan hebben in Figuur 6.1: op de horizontale as hebben we
nu 1, 10, 100, . . . in plaats van 1, 2, 3, . . . , en op de verticale as hebben we nu 1,
0.1, 0.01, De power law kan worden herkend aan deze kenmerkende rechte lijn
in de log-log plot. Er is echter een verhitte wetenschappelijke discussie gaande
of de graad van knopen in real-life netwerken echt kan worden beschouwd als
een power law. Er is zelfs een artikel geschreven over deze discussie in het NRC!
(‘Hoe machtig is het superknooppunt?’ door Alex van den Brandhof, NRC, 20-
12-2019.) We zullen verder niet ingaan op deze discussie. Voor deze cursus is het
het belangrijkst om te weten dat de power law een algemeen aanvaard wiskundig
begrip is dat het schaalvrije verschijnsel van netwerken goed weergeeft. In deze
sessie zullen we op twee verschillende manieren bewijzen dat power laws een
valide model zijn voor het schaalvrije verschijnsel. Daarna gaan we terug naar
de stochastische grafen, en zullen we zien dat de Erdős-Rényi (E-R) stochastische
graaf niet deze power-law-gradenverdeling heeft. Kunnen we dan het E-R model
zo manipuleren dat de power laws wel kunnen worden gebruikt? Het antwoord
is ja: deze manipulatie heet een gegeneraliseerde stochastische graaf, en zorgt
ervoor dat de power laws weer terug komen, zoals we kunnen zien in de rechte
lijn in Figuur 6.1.
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Figuur 6.1: Probability density function of a power law, in the log-log scale,
τ = 2.5.
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7 Opkomst van power laws in het preferential
attachment model
Lezing 5, Nelly Litvak

We kunnen dit schaalvrije verschijnsel observeren, meten en zelfs modelleren,
maar toch is er nog een vraag onbeantwoord: waarom zijn netwerken eigenlijk
schaalvrij? Een poging om deze vraag te beantwoorden is door middel van het
preferential attachment model: een dynamisch wiskundig model van de groei van
een netwerk. Dit model formaliseert het mechanisme dat ook bekend is als ‘rijken
worden rijker’, of ‘bekende mensen worden nog bekender’. Dit werkt globaal
als volgt: we beginnen met een netwerk met drie knopen, zoals de drie grijze
punten in Figuur 7.1. Wanneer de volgende knoop verschijnt (het zwarte punt
in de figuur), kan deze knoop een verbinding maken met èèn van de drie knopen
(stippellijnen). Om dat te doen gebruikt de nieuwe knoop het mechanisme van
‘rijken worden rijker’: de kans om te verbinden met een grijze knoop is evenredig
met het aantal verbindingen dat de knoop op dit moment heeft. In de figuur
heeft een van de grijze knopen twee verbindingen, waardoor deze een hogere kans
heeft om er nog eentje te krijgen. Dus, hoe meer verbindingen een knoop krijgt,
hoe makkelijker het is om nog meer verbindingen te krijgen. Precies het ‘rijken
worden rijker’-mechanisme! Het is heel natuurlijk dat met zulke mechanismen
sommige knopen erg goed verbonden zullen zijn met de rest van de graaf. In deze
sessie zullen we gaan kijken naar de geschiedenis van deze preferential attachment
modellen en zullen we wiskundig aantonen dat deze modellen zorgen voor power
laws.

Figuur 7.1: A new (black) vertex arrives in the network, and connects to
existing vertices with probabilities proportional to their de-
grees.
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8 Geometrie voor het modelleren van
driehoeken
Lezing 6, Nelly Litvak

We hebben al gezien dat een schaarse Erdős-Rényi stochastische graaf maar wei-
nig driehoeken heeft. Dus nu is de vraag: is er een geschikt model voor een
netwerk met veel driehoeken? Een fundamentale manier om deze vraag te be-
antwoorden is door het introduceren van geometrie in een netwerk. Dit kunnen
we doen door de knopen in een multi-dimensionale ruimte te plaatsen. Soms
is zo’n geometrie al aanwezig in een netwerk, bijvoorbeeld in een netwerk van
vliegvelden die verbonden zijn door directe vluchten: elk vliegveld heeft een lo-
catie. Om het iets abstracter maken: we kunnen de ‘locatie’ van een knoop
defini eren aan de hand van de eigenschappen van deze knoop. Een voorbeeld:
we kunnenmensen ‘plaatsen’ in een multi-dimensionale ruimte aan de hand van
hun leeftijd en hobby’s. In een geometrische stochastische graaf heeft een paar
knopen een verbinding als ze dichtbij elkaar zijn. Neem bijvoorbeeld een soci-
aal netwerk: mensen met dezelfde eigenschappen hebben een grotere kans om
vrienden met elkaar te zijn. Dit is een heel natuurlijk en aantrekkelijk idee!
Veel netwerkwetenschappers geloven daarom ook dat geometrische stochastische
grafen de enige manier zijn om realistische modellen te krijgen van complexe
netwerken. In deze sessie zullen we wiskundig bewijzen dat er inderdaad veel
driehoeken zijn in geometrische stochastische grafen, zoals te zien is in Figuur
8.1. Maar we zullen ook naar andere eigenschappen kijken: hoe kunnen we een
geometrische stochastische graaf schaars maken? Kan het ook schaalvrij zijn?
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Figuur 8.1: A geometric random graph. Image: Pim van der Hoorn.
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9 Wie is het belangrijkst in een netwerk?
Lezing 7, Pim van der Hoorn

Net zoals post op sociale-media, is niet elke knoop in een netwerk even relevant.
Dus, welke knopen zijn het belangrijkst? Deze simpele vraag blijkt niet zo simpel
te beantwoorden. De voornaamste reden is dat “belangrijk” verschillende dingen
kan betekenen, afhankelijk van het netwerk of simpelweg de vraag die je hiermee
wilt beantwoorden. Desalniettemin hebben onderzoekers verschillende manie-
ren ontwikkeld om het belang van knopen te meten en ze met elkaar te kunnen
vergelijken. Deze methodes vallen onder de noemer centraliteitsmaten. Zij rang-
schikken de knopen in een netwerk gebaseerd op wat belangrijk betekent. In het
eerste deel van deze sessie zullen we kijken naar verschillende centraliteitsmaten
die te maken hebben met paden en navigatie in netwerken. We zullen leren wat
de intüıtie achter hun definitie is en wat ze ons kunnen vertellen over het belang
van de knopen in een netwerk. Hierna gaan we onze mouwen opstropen en de
kersverse kennis toepassen op misschien wel het meest notoire transportnetwerk
in Nederland: het spoorweg-netwerk van de NS (Figuur 9.1). We zullen zien hoe
verschillende maten de stations op een andere manier rangschikken en bespreken
wat dit ons kan vertellen over hoe belangrijk de stations echt zijn. Uiteindelijk
kunnen we misschien een station aanwijzen dat het belangrijkst is en ook uitleg-
gen waarom. En nee, het antwoord hoeft niet altijd Utrecht Centraal te zijn.
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Figuur 9.1: Wat is het belangrijkste station in Nederland’s meest notoire trans-
port netwerk? Afbeelding: Wikimedia Commons
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10 Hoe maak je een netwerk efficiënt?
Lezing 8, Clara Stegehuis

Hoe kunnen berichten en fake news zo snel viral gaan op social media? En wat is
de rol van netwerken? In deze lezing gaan we interactief op zoek naar de belang-
rijkste netwerkeigenschappen die voor snelle verspreiding zorgen. We tekenen
efficiënte en minder efficënte netwerken voor verspreidingen en we onderzoeken
met welke wiskundige netwerkeigenschappen dit samenhangt.

Figuur 10.1: Fake news (geel/bruin) dat zich verspreidt over Twitter. Links:
Fake news over vliegtuigsporen in de lucht mengt zich met gewone
berichten over de lucht. Rechts: antivaxberichten mengen zich
met berichten over de griep.
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